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Exercise 11.1 Free-particle Green’s function and propagator (2 points)

Green’s functions for the time-independent Schrödinger equation are defined by

G±(E, ~x, ~x ′) = 〈~x| (E − Ĥ ± i0)−1 |~x ′〉, (1)

where Ĥ is the (time-independent) Hamilton operator of the system. From G±(E, ~x, ~x ′),
Green’s functions for the forward/backward evolution in time, the so-called retarded/ad-
vanced “propagators”, are obtained as

G±(~x, t; ~x ′, t′) = i

∞
∫

−∞

dE

2π
e−iE(t−t′)/~G±(E, ~x, ~x ′). (2)

For the motion of a free particle (mass M) in three dimensions, calculate G±
0 (~x, t; ~x ′, t′)

from

G±
0 (E, ~x, ~x ′) =

i

(2π)2|~x− ~x ′|

∞
∫

−∞

dk
ke−ik|~x−~x′|

E − ~2k2

2M
± i0

= −
Me±ikE |~x−~x′|

2π~2|~x− ~x ′|
, kE =

√

2M(E ± i0)/~,

which was derived in the lecture.

Hint: Perform the integration over E first, so that the integration over k can be done

with the Fresnel integral
∞
∫

−∞
dx eiax2

=
√

iπ
a

for a ∈ R.

Please turn over!



Exercise 11.2 Spread of free wave packets (3 points)

Consider the one-dimensional propagation of a free wave packet of mass m which is
described by any normalised wave function ψ(x, t).

a) Show that the momentum expectation value 〈p̂〉 and momentum uncertainty ∆p ≡
√

〈(p̂− 〈p̂〉)2〉 are constant in time. How does the position expectation value 〈x̂〉
develop in t?

b) Prove that the uncertainties ∆x and ∆p of position and momentum are related by

∆x2 =
∆p2t2

m2
+ at+ ∆x2

0, (3)

where ∆x0 is the spread at t = 0 and a is a constant. Interpret the leading term for
large times t.

c) Derive a bound on |a| from Heisenberg’s uncertainty principle. Which values can
be taken by a if ∆x0 is minimal?

Exercise 11.3 Free-particle wave functions with quantum numbers l, m (3 points)

We consider the separation of the time-independent Schrödinger equation for a free par-
ticle of mass M in polar coordinates with the ansatz φklm(r, θ, ϕ) = Rl(kr)Ylm(θ, ϕ) for
the wave function. This leads to the differential equation

D(l)Rl(ρ) ≡

(

1

ρ2

d

dρ
ρ2 d

dρ
−
l(l + 1)

ρ2
+ 1

)

Rl(ρ) = 0 (4)

for the radial function Rl(ρ) = Rl(kr), where k ≥ 0 is related to the energy eigenvalue by
E(k) = ~

2k2/(2M). As an ordinary 2nd-order differential equation, Eq. (4) possesses two
linearly independent solutions for each value of l = 0, 1, 2, . . . .

a) Show that the two independent solutions of Eq. (4) are given by

jl(ρ) = (−ρ)l

(

1

ρ

d

dρ

)l

j0(ρ), j0(ρ) =
sin ρ

ρ
,

nl(ρ) = (−ρ)l

(

1

ρ

d

dρ

)l

n0(ρ), n0(ρ) = −
cos ρ

ρ
, l = 0, 1, . . . ,

where jl and nl are the spherical Bessel and Neumann functions, respectively.

Hint: A simple way is based on induction using Rl+1(ρ) = −ρl d
dρ
ρ−lRl(ρ) and

evaluating the commutator of the differential operator D(l+1), as defined in Eq. (4),
and the operator ρl d

dρ
ρ−l.

b) Derive series expansions for jl and nl about ρ = 0, making use of the series for sin ρ
and cos ρ. Give the leading asymptotic behaviour of jl and nl for ρ → 0.

c) Show that the leading asymptotic behaviour of jl and nl for ρ → ∞ is given by

jl(ρ) ∼
ρ→∞

1

ρ
sin

(

ρ−
lπ

2

)

, nl(ρ) ∼
ρ→∞

−
1

ρ
cos

(

ρ−
lπ

2

)

. (5)


