Exercises to Advanced Quantum Mechanics — Sheet 9

Prof. S. Dittmaier, Universität Freiburg, WS18/19

Exercise 9.1 Anomalous Zeeman effect (4 points)

We consider a one-electron atom (relative nucleus charge Z) in a weak homogeneous magnetic field of the strength $\vec{B} = B\vec{e}_3$ and consider the interaction Hamiltonian \hat{H}_B of the atom with the magnetic field as perturbation,

$$\hat{H}_B = \frac{\mu_B}{\hbar} \left(\vec{L} + g_e \vec{S} \right) \cdot \vec{B},\tag{1}$$

where $\mu_{\rm B} = \frac{e\hbar}{2m_{\rm e}}$ is Bohr's magneton and $g_{\rm e} = 2.0023...$ the gyromagnetic ratio of the electron. The unperturbed Hamiltonian reads

$$\hat{H} = \frac{\hat{\vec{p}}^2}{2m_e} - \frac{Ze^2}{4\pi\varepsilon_0\hat{r}} + \hat{H}_{FS},\tag{2}$$

where \hat{H}_{FS} is the Hamiltonian responsible for the atomic fine structure. The unperturbed energy eigenstates $|nlsjm_j\rangle$ are eigenstates of the operators \hat{H} , \vec{L}^2 , \vec{S}^2 , \vec{J}^2 , \hat{J}_3 , with the usual parametrisation of their eigenvalues by the numbers $n \in \mathbb{N}_1$; $l = 0, 1, \ldots, n-1$; $s = \frac{1}{2}$; $j = l \pm \frac{1}{2}$; $m = -j, \ldots, j$. The unperturbed energy levels are

$$E_{nj} = E_n \left[1 + \frac{(Z\alpha)^2}{n^2} \left(\frac{n}{j + \frac{1}{2}} - \frac{3}{4} \right) \right], \qquad E_n = -\frac{Z^2}{n^2} E_R, \quad n = 1, 2, \dots,$$
 (3)

where α is the fine-structure constant and $E_{\rm R}$ Rydberg's energy.

a) Derive the energy shift ΔE_B of the energy levels induced by \hat{H}_B , using 1st-order perturbation theory and the relation

$$|j = l \pm \frac{1}{2}, m_j\rangle = \pm \sqrt{\frac{l \pm m_j + \frac{1}{2}}{2l + 1}} \left| l, s; m_l = m_j - \frac{1}{2}, m_s = \frac{1}{2} \right\rangle + \sqrt{\frac{l \mp m_j + \frac{1}{2}}{2l + 1}} \left| l, s; m_l = m_j + \frac{1}{2}, m_s = -\frac{1}{2} \right\rangle$$
(4)

between the eigenstates $|j, m_j\rangle$ of \vec{L}^2 , \vec{S}^2 , \vec{J}^2 , \hat{J}_3 and the eigenstates $|l, s; m_l, m_s\rangle$ of \vec{L}^2 , \vec{S}^2 , L_3 , S_3 . Hint: \hat{H}_B is diagonal in the basis $|j, m_j\rangle$.

b) To prepare an alternative derivation, first show that

$$\hbar^2 j(j+1)\langle j, m|\vec{V}|j, m'\rangle = \langle j, m|(\vec{V} \cdot \vec{J})\vec{J}|j, m'\rangle \tag{5}$$

for any vector operator \vec{V} , upon exploiting the identity

$$[\vec{J}^2, [\vec{J}^2, \vec{V}]] = 2\hbar^2 (\vec{J}^2 \vec{V} + \vec{V} \vec{J}^2) - 4\hbar^2 (\vec{V} \cdot \vec{J}) \vec{J}. \tag{6}$$

- c) Derive ΔE_B using relation (5).
- d) Sketch the energy levels $E_{nj} + \Delta E_B$ as functions of B for all states emerging from the unperturbed states $nl_j = 1s_{1/2}, 2s_{1/2}, 2p_{1/2}, 2p_{3/2}$.

Please turn over!

Exercise 9.2 Linear and quadratic Stark effect (3 points)

We consider a one-electron atom (relative nucleus charge Z) in a homogeneous electric field of the strength $\vec{\mathcal{E}} = \mathcal{E}\vec{e}_3$ and consider the interaction Hamiltonian \hat{H}_E of the atom with the electric field as perturbation,

$$\hat{H}_E = e\mathcal{E}\hat{x}_3. \tag{7}$$

For sufficiently strong electric fields, spin effects, atomic fine structure, and other corrections can be neglected in a first approximation, so that the unperturbed Hamiltonian reads

$$\hat{H} = \frac{\hat{\vec{p}}^2}{2m_e} - \frac{Ze^2}{4\pi\varepsilon_0\hat{r}}.$$
 (8)

The unperturbed energy eigenstates $|nlm\rangle$ are eigenstates of the operators \hat{H} , \vec{L}^2 , and L_3 , with the usual parametrisation of their eigenvalues by the numbers $n \in \mathbb{N}_1$, $l = 0, 1, \ldots, n-1$ and $m = -l, \ldots, l$, respectively.

a) Show that \hat{H}_E is block diagonal in the degenerate subspace spanned by $|n, l, m\rangle$ for fixed n. How are the blocks characterised and which matrix elements can be non-zero?

Hint: Use the Wigner-Eckart theorem, and show that the diagonal elements vanish.

- b) Calculate the first-order energy shifts ΔE_{nlm} for the first excited states (n=2).

 Hint: Energy eigenfunctions can be taken from the literature.
- c) Calculate the second-order energy shift $\Delta E_{100}^{(2)}$ of the ground state approximately upon replacing $E_{n>1}$ by E_2 in the underlying formula.

Hint: Using $\langle \hat{x}_j^2 \rangle_{100} = \langle \hat{r}^2 \rangle_{100}/3 = a_{\rm B}^2/Z^2$ saves you the radial integral.

Exercise 9.3 Linear potential and variational method (2 points)

As in Exercise 8.3, consider a particle with mass m in a one-dimensional potential $V(x) = \varepsilon |x|$ with $\varepsilon > 0$. In the following we use $\phi_0(x) \propto \exp(-\alpha x^2)$ and $\phi_1(x) \propto x \exp(-\beta x^2)$ As normalised trial functions for variations, where α and β are independent free real parameters and $\alpha, \beta > 0$.

- a) Determine an approximation for the ground state energy E_0 upon minimising the energy expectation value for a wave function $\psi(x)$ formed by an optimal linear combination of the trial functions. Compare the result with the one obtained in Exercise 8.3.
- b) Determine an approximation for the energy E_1 of the first excited state similar to the procedure for the ground state. Again, compare the result with the one obtained in Exercise 8.3.

Hint: Use symmetry arguments to constrain the ansatz for the trial functions.