Exercises to Advanced Quantum Mechanics — Sheet 5

Prof. S. Dittmaier, Universität Freiburg, WS18/19

Exercise 5.1 Time-reversal operator (3 points)

The time-reversal operator \mathcal{T} is antilinear (!) and defined by the following action on position eigenstates:

$$\mathcal{T}|\vec{x}\rangle = |\vec{x}\rangle. \tag{1}$$

Additionally \mathcal{T} inverts the sign of the external time dependence in potentials $V(\hat{x}, t)$, i.e. $\mathcal{T}V(\hat{x}, t)\mathcal{T}^{-1} = V(\hat{x}, -t)$. Recall the basic properties of antilinear and antiunitary operators, as e.g. given in Exercise 2.2. (Spin will not be considered in this exercise.)

- a) Show that \mathcal{T} is antiunitary and acts on position-space wave functions as $\mathcal{T}\psi(\vec{x},t) = \psi(\vec{x},t)^*$. Derive the operators $\hat{\vec{x}}'$, $\hat{\vec{p}}'$, $\hat{\vec{L}}'$, where $A' = \mathcal{T} A \mathcal{T}^{-1}$ is the time-reversed version of an operator A. Here $\hat{\vec{L}} = \hat{\vec{x}} \times \hat{\vec{p}}$ is the usual orbital angular momentum of a single particle.
- b) Show that $\mathcal{T}\psi(\vec{x},t) = \psi(\vec{x},-t)$ for states obeying $\mathcal{T}|\psi(t=0)\rangle = |\psi(0)\rangle$ upon deriving the relation $\mathcal{T}U(t,0)\mathcal{T}^{-1} = U(-t,0)$ for the time evolution operator $U(t,t_0)$ of a system with a time-dependent Hamiltonian $\hat{H}(t)$ whose external time dependence is symmetric under time revearsal, i.e. $\hat{H}(-t) = \hat{H}(t)$.
- c) Derive the time-reversed operators of the electromagnetic potentials and the field strengths $\vec{A}'(\hat{\vec{x}},t)$, $\Phi'(\hat{\vec{x}},t)$, $\vec{E}'(\hat{\vec{x}},t)$, $\vec{B}'(\hat{\vec{x}},t)$, upon analysing Maxwell's equations and the fact that electric charges do not change sign under time reversal.

Exercise 5.2 Rotation matrices (2 points + 1 bonus point)

Consider a rotation about the vector $\vec{\theta} = \theta \vec{e}$ in 3-dimensional space, i.e. about an axis \vec{e} $(\vec{e}^2 = 1)$ with an angle θ $(0 \le \theta \le \pi)$.

a) Show that the 3×3 matrix $R(\vec{\theta})$ for this rotation is given by

$$R(\vec{\theta}) = \cos\theta \, \mathbb{1} + (1 - \cos\theta) \, \vec{e} \, \vec{e}^{\mathrm{T}} + \sin\theta \, \vec{e} \times, \tag{2}$$

upon directly evaluating the exponential series $R(\vec{\theta}) = \exp{\{\vec{\theta} \cdot \vec{I}\}}$ with $(I_a)_{bc} = -\epsilon_{abc}$.

b) Derive (short!) formulas that deliver θ and the components of \vec{e} directly from the components of the matrix $R(\vec{\theta})$. Use these results to determine θ and \vec{e} for the rotation

$$R(\vec{\theta}) = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2\\ 2 & 2 & -1\\ -1 & 2 & 2 \end{pmatrix}. \tag{3}$$

c) Earn a bonus point for deriving θ and \vec{e} for a general rotation $R(\alpha, \beta, \gamma)$ that is parametrised by the Euler angles α, β, γ as defined in the lecture.

Please turn over!

Exercise 5.3 Angular momentum eigenstates reloaded (2 points)

Consider the operators J_a (a=1,2,3) of angular momentum, which obey the commutation relations

$$[J_a, J_b] = i\hbar \sum_c \epsilon_{abc} J_c, \tag{4}$$

and the related operators $\vec{J}^2 = \sum_a J_a J_a$ and $J_{\pm} = J_1 \pm i J_2$.

- a) Derive all commutators of J_3 , J_{\pm} , and \vec{J}^2 .
- b) Derive all allowed values of the parameters j and m which parametrise the eigenstates $|j,m\rangle$ of \vec{J}^2 and J_3 as follows,

$$\vec{J}^{2}|j,m\rangle = \hbar^{2}j(j+1)|j,m\rangle, \qquad J_{3}|j,m\rangle = \hbar m|j,m\rangle.$$
 (5)

c) Derive the relations

$$J_{\pm}|j,m\rangle = c_{jm}^{\pm}|j,m\pm 1\rangle \tag{6}$$

and explicitly determine the constants c_{im}^{\pm} .

d) Write down the explicit form of the matrices representing J_3 , J_{\pm} , and \vec{J}^2 for the three smallest values of j.