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Exercise 1.1 Pure versus mixed ensembles of qm. states (3 points)

Consider a hermitian operator A operating on a two-dimensional Hilbert space H spanned
by the two normalised orthogonal states |1〉, |2〉, i.e. A has the matrix representation
A =

∑

k,lAkl |k〉〈l|.

a) Calculate the expectation value 〈A〉ψ in the pure (normalised) qm. state |ψ〉 =
c1|1〉 + c2|2〉, c1, c2 ∈ C. Keeping A fixed, show that the extremal values of 〈A〉ψ are
the eigenvalues of the operator A.

b) Calculate the density operator ρ for a mixed ensemble of systems that are all in
pure qm. states |1〉 or |2〉 with classical probabilities pk = |ck|

2 for k = 1, 2, respec-
tively. Use ρ to determine the expectation value 〈A〉ρ for an A measurement in the
ensemble.

c) Consider the difference 〈δA〉 = 〈A〉ψ − 〈A〉ρ. Under which conditions does 〈δA〉
vanish? For which states |ψ〉 and ensembles ρ is 〈δA〉 extremal?

Exercise 1.2 System of free electrons (4 points)

Consider a system of N free electrons whose one-particle states are characterised by fixed
wave vectors ~k (we ignore the spin quantum numbers), which are normalised according

to 〈~k′|~k〉 = (2π)3δ(~k − ~k′).

a) Construct the position-space wave function ψ~k1,~k2
(~x1, ~x2) for a state |~k1, ~k2〉 contain-

ing two electrons with momenta ~k1 and ~k2. Determine the normalisation of this
state by calculating 〈~k′

1,
~k′

2|
~k1, ~k2〉 in two ways and using the completeness relation

1
2

∫ d3k1

(2π)3

d3k2

(2π)3 |~k1
~k2〉〈~k1

~k2| = 1.

b) Calculate |ψ~k1,~k2
(~x1, ~x2)| and separately inspect the two limits ~x1 → ~x2 and ~k1 → ~k2.

Give physical arguments explaining the two results.

c) Generalise problem a) to the case of N electrons and consider ψ~k1,...,~kN
(~x1, . . . , ~xN)

in the limits ~xi → ~xj and ~ki → ~kj for a pair of particle indices i, j.

Hint: remember the concept of Slater determinants.

d) Determine the dependence of ψ~k1,...,~kN
(~x1, . . . , ~xN) on the centre-of-mass position ~X

upon introducing the new coordinates

~X =
1

N

N
∑

i=1

~xi, ~x ′

j = ~xj − ~X, j = 1, . . . , N − 1.

Please turn over!



Exercise 1.3 Plane and spherical waves of a free particle (2 points)

The Hamilton operator Ĥ =
~̂p 2

2M
of a free particle commutes with the angular momentum

operator ~L, i.e. in particular with the operators ~L2 and L3, for which [~L2, L3] = 0. A
complete set of energy eigenfunctions in position space can, thus, be constructed from
the usual spherical harmonics Ylm(θ, ϕ) containing the angular information and functions
f(r) containing the dependence on the radius r in polar coordinates. The functions are
easily identified as the spherical Bessel functions jl(kr), where k is related to the energy

eigenvalue E by E =
~

2k2

2M
. These simultaneous eigenfunctions of Ĥ , ~L2, and L3 are, thus,

of the form

φklm(r, θ, ϕ) = jl(kr)Ylm(θ, ϕ). (1)

On the other hand, plane waves ei~k·~x are simultaneous eigenfunctions of Ĥ and the carte-
sian momentum operator ~̂p. For scattering problems, it is useful to express the plane wave
solutions in terms of the basis defined in Eq. (1). Consider the case ~k = k~e3.

a) Show that the problem is reduced to fixing the coefficients cl in

eiρu =
∞
∑

l=0

cljl(ρ)Pl(u). (2)

b) Show that cl = (2l + 1) il.

Hint: One way to determine cl is to isolate the coefficient of (ρu)l on both sides of
Eq. (1), making use of the fact that Pl(u) is a polynomial of degree l and jl(ρ) is a
power series in ρ with powers ρn, n ≥ l. Explicitly, Pl and jl are defined as follows,

Pl(u) =
1

2ll!

dl

dul
(u2 − 1)l,

jl(ρ) = (−ρ)l
(

1

ρ

d

dρ

)l

j0(ρ), j0(ρ) =
sin ρ

ρ
, l = 0, 1, . . . .


