Exercises to Advanced Quantum Mechanics Sheet 6
—  Prof. S. Dittmaier, Dr. H. Rzehak, Universitit Freiburg, WS14/15 —

Exercise 6.1 Landau levels of electrons in a magnetic field (2 points)

Consider an electron (electric charge ¢ = —e) in a homogeneous magnetic field, which is
aligned along the z3 axis (B =V x A = Bes).

a) Generate the Hamilton operator upon applying the “minimal substitution” p —
IM=p-— qA(x) to the Hamilton operator of a free partlcle and subsequently adding
the interaction part H,=— e B of the magnetic field B with the magnetic moment

L= 25’7‘1165 induced by the spin S.

b) Reduce the eigenvalue problem of the Hamilton operator to appropriate one-dimen-
sional problems for the spatial motion and show that the eigenvalues have the form
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where hk is the continuous eigenvalue of p3, mg corresponds to the spin orientation,
and g, = 2.002... denotes the g-factor of the positron.

Exercise 6.2 SU(2) matrices and rotations (2 points)

SU(2) is the Lie group of dimension 3 consisting of all complex, unitary 2 x 2 matrices
A with det A = 1. A convenient way to parametrize A is in terms of a rotation angle ¢
(0 <6 < 27) and a 3-dim. real unit vector € (e.g. parametrized by its polar and azimuthal

angles ¥ and ¢, respectively), defining the “rotation vector” 6 = 6é:

A(d) = exp{—%g-(_f} = cosgl—l((? 5)sing, (1)

where & = (01, 09, 03) is the “vector” formed by the Pauli matrices o,.

a) Show that all A € SU(2) can be expressed in terms of the form (1). Express 6 and
¢’ in terms of the coefficients of A. Which matrices A correspond to a given rotation
in 3-dim. space?

b) Associating a matrix V = ¢- & with each 3-dim. vector ¥, show that the transforma-
tion V — V/ = AV Al rotates the vector 7 into the vector &’ = R(0)# corresponding
to the matrix V' = ¢’ - &, where R(6) is the general rotation matrix of Exercise 5.2.
Show that the different versions of A corresponding to the same rotation in 3-dim.
space in fact lead to the same rotated vector o’.

Please turn over!



Exercise 6.3  Dynamical symmetry of the isotropic 3-dim. harmonic oscillator (4 points)

In Exercise 2.1 you have decomposed the Hamiltonian H of the isotropic 3-dimensional
harmonic oscillator into its individual parts corresponding to cartesian coordinates, result-

ing in

3
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H = hwg (a;f»aj—iri),
j=1

where a; and a} (7 = 1,2, 3) are the usual shift operators for the movement in x; direction
obeying the relations

a)

laj,ar) =0,  [ahal] =0,  [aj,a}] = dj.

For which complex matrices U does the replacement @ = (ay,as,a3)’ — @ = Ua
represent a symmetry? The set of all U defines a Lie group. What is the dimension
of this group? How are the generators X, of this group characterized?

What is the role of the one-dimensional subgroup consisting of pure phase transfor-
mations U = €1 ? What is an appropriate condition on the matrices U of a) to
eliminate those phase transformations?

What is the relation of the symmetry transformations represented by U defined in
a) to rotations in 3-dim. space? What is the relation between the X, and orbital
angular momentum? Identify the “accidental symmetry” that goes beyond pure
rotational invariance.

The energy eigenstates to the eigenvalue F,, = hw(n+ %) with a fixed number n € Ny

are proportional to the states a}l e a;n |0), which transform under U like components
of a symmetric tensors of rank n in three dimensions:
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Deduce the degree of degeneracy of E, from this consideration.



