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Exercise 6.1 Landau levels of electrons in a magnetic field (2 points)

Consider an electron (electric charge q = −e) in a homogeneous magnetic field, which is
aligned along the x3 axis (B = ∇×A = Be3).

a) Generate the Hamilton operator upon applying the “minimal substitution” p̂ →
Π̂ = p̂− qA(x̂) to the Hamilton operator of a free particle and subsequently adding

the interaction part Ĥs = −~µ · ~B of the magnetic field ~B with the magnetic moment
~µ = gq

2me

~S induced by the spin ~S.

b) Reduce the eigenvalue problem of the Hamilton operator to appropriate one-dimen-
sional problems for the spatial motion and show that the eigenvalues have the form

Ek,n =
~2k2

2m
+ ~ω

(
n+

1

2

)
+ ge~ωLms, n ∈ N0, ms = ±1

2
,

where ~k is the continuous eigenvalue of p̂3, ms corresponds to the spin orientation,
and ge = 2.002... denotes the g-factor of the positron.

Exercise 6.2 SU(2) matrices and rotations (2 points)

SU(2) is the Lie group of dimension 3 consisting of all complex, unitary 2 × 2 matrices
A with detA = 1. A convenient way to parametrize A is in terms of a rotation angle θ
(0 ≤ θ < 2π) and a 3-dim. real unit vector ~e (e.g. parametrized by its polar and azimuthal

angles ϑ and ϕ, respectively), defining the “rotation vector” ~θ = θ~e:

A(~θ) = exp

{
− i

2
~θ · ~σ

}
= cos

θ

2
1− i(~e · ~σ) sin

θ

2
, (1)

where ~σ = (σ1, σ2, σ3) is the “vector” formed by the Pauli matrices σa.

a) Show that all A ∈ SU(2) can be expressed in terms of the form (1). Express θ and
~e in terms of the coefficients of A. Which matrices A correspond to a given rotation
in 3-dim. space?

b) Associating a matrix V = ~v ·~σ with each 3-dim. vector ~v, show that the transforma-

tion V → V ′ = AV A† rotates the vector ~v into the vector ~v ′ = R(~θ)~v corresponding

to the matrix V ′ = ~v ′ · ~σ, where R(~θ) is the general rotation matrix of Exercise 5.2.
Show that the different versions of A corresponding to the same rotation in 3-dim.
space in fact lead to the same rotated vector ~v ′.

Please turn over!



Exercise 6.3 Dynamical symmetry of the isotropic 3-dim. harmonic oscillator (4 points)

In Exercise 2.1 you have decomposed the Hamiltonian Ĥ of the isotropic 3-dimensional
harmonic oscillator into its individual parts corresponding to cartesian coordinates, result-
ing in

Ĥ = ~ω
3∑
j=1

(
a†jaj +

1

2

)
,

where aj and a†j (j = 1, 2, 3) are the usual shift operators for the movement in xi direction
obeying the relations

[aj, ak] = 0, [a†j, a
†
k] = 0, [aj, a

†
k] = δjk.

a) For which complex matrices U does the replacement ~a = (a1, a2, a3)
T → ~a′ = U~a

represent a symmetry? The set of all U defines a Lie group. What is the dimension
of this group? How are the generators Xa of this group characterized?

b) What is the role of the one-dimensional subgroup consisting of pure phase transfor-
mations U = eiθ1 ? What is an appropriate condition on the matrices U of a) to
eliminate those phase transformations?

c) What is the relation of the symmetry transformations represented by U defined in
a) to rotations in 3-dim. space? What is the relation between the Xa and orbital
angular momentum? Identify the “accidental symmetry” that goes beyond pure
rotational invariance.

d) The energy eigenstates to the eigenvalue En = ~ω(n+ 3
2
) with a fixed number n ∈ N0

are proportional to the states a†j1 . . . a
†
jn
|0〉, which transform under U like components

of a symmetric tensors of rank n in three dimensions:

a†j1 . . . a
†
jn
|0〉 → a′†j1 . . . a

′†
jn
|0〉 =

∑
k1,...,kn

U∗j1k1 . . . U
∗
jnkna

†
k1
. . . a†kn|0〉.

Deduce the degree of degeneracy of En from this consideration.


