Exercise 7.1 (2 points) Gluon fields in axial gauge

The gauge of the gluons in QCD can be fixed by the Lagrangian

$$\mathcal{L}_{\text{fix}} = -\frac{1}{2\xi} (n^{\mu} A^{a}_{\mu})^{2},$$

where n^{μ} denotes a constant 4-vector.

- a) Applying this gauge, calculate the free gluon propagator in momentum space, $G_{0,\mu\nu}^{AA,ab}(k,-k)$.
- b) What is the Faddeev–Popov Lagrangian \mathcal{L}_{FP} corresponding to this gauge fixing? Which Feynman rule can be obtained for the coupling of the gluons to the ghost fields?
- c) Derive the Slavnov–Taylor identity

$$n^{\mu}n^{\nu}G^{AA,ab}_{\mu\nu}(k,-k) = -i\xi\delta^{ab}$$

by starting from the BRS variation of $\langle 0|T\bar{u}^a(x)A^b_\nu(y)|0\rangle$. Check the identity for the free propagator.

d) The "axial gauge" is defined by the limit $\xi \to 0$. Explain why, in this gauge, no Feynman graphs with ghost fields contribute to the S matrix elements. (Hint: The polarisation vectors $\varepsilon^a_{\mu}(k)$ of the external gluons fulfill the condition $n^{\mu}\varepsilon^a_{\mu} = 0$.)

Please turn over!

Exercise 7.2 (1 point) Ward identity of the fermion-photon vertex in QED

The vertex function $\Gamma^{A\bar{f}f}_{\mu}(k,\bar{p},p)$ of the fermion–photon vertex of QED is related to the Green function $G^{A\bar{f}f}_{\mu}(k,\bar{p},p)$ in momentum space according to

$$G^{A\bar{f}f}_{\mu}(k,\bar{p},p) = G^{AA}_{\mu\nu}(k,-k) G^{\bar{f}f}(\bar{p},-\bar{p}) \Gamma^{A\bar{f}f,\nu}(k,\bar{p},p) G^{\bar{f}f}(-p,p),$$

where $G^{AA}_{\mu\nu}(k,-k)$ and $G^{\bar{f}f}(-q,q)$ denote the photon and the fermion propagators. The vertex functions can additionally be decomposed in the following way,

where the vertex correction $\Lambda_{\mu}(-\bar{p},p)$ and the self energy $\Sigma^{\bar{f}f}(q)$ include quantum corrections of higher orders of perturbation theory.

a) Which relation between the vertex function $\Gamma^{A\bar{f}f}_{\mu}$ and $\Gamma^{\bar{f}f}$ results from the following Ward identities?

$$\begin{split} \frac{i}{\xi} k^2 k^{\mu} \, G^{A\bar{f}f}_{\mu}(k,\bar{p},p) &= Q_f e \left[G^{\bar{f}f}(-p,p) - G^{\bar{f}f}(\bar{p},-\bar{p}) \right], \\ k^{\mu} G^{AA}_{\mu\nu}(k,-k) &= -i\xi \frac{k_{\nu}}{k^2}. \end{split}$$

b) Which relation between Λ_{μ} and $\Sigma^{\bar{f}f}$ can be obtained from these identities? In particular, consider the "Thomson limit" $k \to 0$.